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SURFACE CATALYSIS IN DISSOCIATED,
CHEMICALLY FROZEN AIR BOUNDARY LAYERS
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Abstract—This work is concerned with the effects of surface catalysis and variable transport properties
on the structure of chemically frozen, dissociated air boundary layers enveloping flat plates and slender
wedges. Our main interest is in nonsimilar hypersonic flows past catalytic segments placed aft of leading
edges or stagnation points coated with noncatalytic materials. The problems are solved numerically; the
method of solution is shown to be reliable and applicable in general to the solution of nonsimilar boundary-
layer equations. Local convective heat transfer and heat release due to catalysis of atoms are computed
separately. These results show that variable transport properties and non-similarity of the flow field have
a significant influence on the heat flux due to catalysis and suggest possible serious errors in available
diagnostic formulas for catalytic gauges.

NOMENCLATURE K, a constant;
Cpr frozen specific heat of the mix- l, dlmen51onl§ss product 9f mix-
ture at constant pressure, ture density and viscosity,
, PH/Peble;
_ ] Le, Lewis number,
¢, = Z WiCpis
i=1 Le — p D cp .
Cps specific heat at constant volume; T u
D, binary, atom-molecule, diffusion . )
coefficient, D = D, Ky, specific surface reaction rate;
’ = Hij» : .
4 dimensionless velocity functions; b, static pressure; )
h enthalpy Pr, Prandtl number of the mixture,
2 _ K.
h= 3, prety
<
H,H, dimensionless total frozen en- 9o das convective heat transfer and heat
thalpies of the mixture, flux due to catalysis, equations
L2 - - (11) and (12);
H=@Gu" +h)GU: +hy) 4 total heat transfer, g, + q;;
= hyhy s q¥ cims convective heat transfer for simi-
o , lar flows based on Lees’ formula
- — — 0-2.
+ Consuitant, U.S. Army Missile Command, Research with | = K = lw,r s o
and Development Directorate, Redstone Arsenal, Alabama. esim, E.CP» CONVective heat transfer for simi-
gﬁzv,;;?;if:t of SCICOM, Inc., P.O. Box 4389, Hunts- Qeion. V.0 lar flows computed, respectively,

1 Research Mathematician, Stanford Research Institute,
Huntsville, Alabama. Now, with SCICOM. Inc.
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with equivalent constant proper-
ties and variable properties;
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Sc, Schmidt number,

K.
Sc = oD

T temperature, [°R];

u, U, velocity components along the
surface;

v, velocity component normal to
the surface;

w, atom concentration ;

W, atom concentration ratio, w/w,;

X, coordinate parallel to the surface ;

¥, coordinate normal to the surface.

Greek symbols
¢, Damkohler number,
- lw(pe:ueUe)%

z, Damkohler number for E.C.P.
problems,
[=K{,.K=1,,%

, coordinate normal to surface;

l, coordinate normal to surface
(E.C.P.) problems),

=K *p,K=1,,"%

A, thermal conductivity of the mix-
ture;

i, dynamic viscosity of the mixture ;

g coordinate parallel to the surface ;

o, density of the mixture;

v, stream function.

Subscripts

a, atom;

ave, average;

e, “edge” of boundary layer;

f, frozen;

i, ith component;

m, molecule;

+ These may appear staggered, for example: h, 5, stands
for ‘“‘total frozen enthalpy at the edge of the boundary
layer.”
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0, refers to &, =1;

r, reference condition;

t, total;

tf, total frozen ;

w, wall ;

w,r, fixed ¢& reference condition at the

wall.

1. INTRODUCTION

Low speeD boundary-layer flows with chemical
reactions confined to a bounding surface were
discussed by Chambré [1] and Chambré and
Acrivos [2, 3]. Shortly thereafter, many aero-
dynamicists considered analogous problems for
hypersonic flows, particular emphasis being
placed on dissociated boundary layers with
catalytic surface recombinations of the atomic
species. These efforts were directed towards
reducing heat transfer to vehicles exposed to a
high-altitude hypersonic environment and to-
wards utilizing catalysis for diagnostics of high-
temperature experimental facilities. The first
utilization is possible because at high altitudes
chemical reactions in a hypersonic boundary
layer comprised of products of shock-dissociated
air are often strongly inhibited ; hence, local heat
transfer may be significantly reduced by pre-
venting surface recombinations of the atomic
species [4-17]. Alternately, the theory of a
frozen, dissociated, hypersonic boundary layer
over a catalytic surface provides a basis for
deducing the degree of free stream dissociation
from relatively simple heat-transfer measure-
ments [18-25].

Now, most of the quoted theoretical works
are based on the assumption of continuously
distributed surface reactions and rest on drastic-
ally simplified representations for the transport
properties of the gaseous mixtures. The justifi-
cations are pragmatical. Well known simplifica-
tions of the governing equations are thus
achieved, the whole procedure presumably
leaving computed values of local heat transfer
substantially unchanged. Errors commonly
quoted are on the order of 5-15 per cent. That
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such claims are not necessarily valid even for
self-similar flows is evident from the recent paper
by Janowitz and Libby [26]. They assumed an
artificial, continuous distribution of surface
catalyticity, isolated the effects due to varia-
tions in transport properties, and established
alterations in heat transfer close to 60 per cent
as well as significant changes in the structure of
the boundary layer. Errors of comparable
magnitude were also noted by Vidal and
Golian [25]. The authors of [25] reported that
measured heat transfer to a uniformly catalytic
flat plate immersed in a frozen dissociated oxy-
gen stream was about 40 per cent lower than that
predicted by a simplified property theory of
Inger [13].

Herein we are concerned with the influence
of transport properties on boundary layer
development and heat transfer when the flows
are nonsimilar. We deal with the flow con-
figuration considered by Chung et al. [27] in
order to re-examine the theoretical basis for the
attractive catalytic gauge systems they mention.
The problems are attacked numerically.t In a
broader sense, our purpose is to further develop
and test a numerical method that is applicable,
in general, to the solution of nonsimilar
boundary-layer flows. In this respect, our aims
resemble those of Smith and his co-workers
[29, 30].

2. ANALYSIS

(1) Boundary value problems

We consider the flow of dissociated air in a
hypersonic laminar boundary layer on either a
flat plate or a wedge. To avoid excessive com-
plications, we think of air as a binary mixture
of atoms and molecules. The transport proper-
ties of the mixture are specified functions of
local atom concentration and temperature. The
boundary layer is chemically frozen; and the

t In contrast to Libby and Liu [14], Fox and Libby [15],
Hayday et al. [16], [28] and Li and Kirk [17] who aim to
develop methods yielding approximate solutions to all
practical purposes in closed form.
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ambient conditions—constant speed U,, con-
stant temperature T, and constant atom con-
centration w,—are given. A section of the sur-
face of the plate or the wedge acts as a catalyst
promoting the recombination of atoms diffusing
from the outer regions of the boundary layer
inward. In all cases, the heterogeneous surface
reaction is of first order and takes place aft of a
given streamwise location X, The surface is
non-catalytic from the leading edge up to x,.

The well known boundary layer equations
appropriate to our problems (see, for example,
[16] pp. 965-966) may be reduced to the
following system:

Momentum
62f 62f
on ( on’ ) Vo
of 0 [of of &f
é[an wlor)~mar] O
Energy
| 6H 1 6H
6r1 (Pr 611)
U2 6] 52f
[( Pr)h,f 6;7 617
h,f ow,
+Zﬁ<le - 1) h:f e 5']]
i=1

of CH of oH
f[516_6 3¢ 5n] @
Diffusion:

a(Law) 1 ow
on \Sc g 27 oy
of OW  Of éW
5[6—1176— - —_]. €
Equations (1)3) reflect changing the standard
independent variables (x, y) to (&, n) where

y

U, \t
ux) jpdy’
0

ele

¢ = xand n(x, y) =(
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The dependent variables W, H are normalized
with respect to free stream quantities,

W= 1, H = h,

We ht So

and f is related to the stream function ¥ by
f= ¥(p.p.U,x)" % All symbols are listed in the
Nomenclature.

The boundary conditions are as follows:

G @ o
af(é, 0) =1(£0)=0, ﬂlljg a—nf(é, n=1; (4a)
H(0)=H,, limH(En=1; (4b)

W(E0) =W, =1 for {<,

4 _ Scypuknt _
3n W(f,o)—m W(¢&,0) foré> ¢,
lim W(¢,n) = 1. (4c)

The statement (4a) is self-explanatory. In (4b),
H,, is taken as constant implying, under some
mild restrictive assumptions, constant surface
temperature (see [ 16] footnote, p. 966). The first
condition in (4c) states that no catalysis takes
place for ¢ < &, A glance at equation (3) suffices
to show that not only is the initial distribution
W(0,n) = 1 automatically required but that
W, n) =1 for all £ < €&, Aft of &, catalytic
recombination of atoms proceeds at a rate k,,;
it is tacitly assumed that the reaction is of first
order as reflected in the balance at the surface
between the diffusive flux of atoms and their
recombination (see [16] and [31], p. 143).

We note in passing that, in the sense of Lees’
cold wall approximation, (1)+(3) cover flows
with pressure gradients and, with a slight change
in n, apply formally to flows past bodies of
revolution. The nonsimilarity of the flow field,
reflected explicitly in the right-hand sides of
(1}A3), is caused principally by the boundary
conditions on the diffusion equation and (one
expects) to a lesser degree by the mutual inter-
dependence of the equations through the trans-
port properties of the mixture. For example, if
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[ = const. and Pr = le; = 1 equations (1) and
(2) admit similarity solutions not dependent
on the diffusion equation. Approximations of
this sort were used in [16], [27] and elsewhere
[31]. One aim of this paper is to present sample
solutions testing the validity of the approxima-
tions just mentioned. For this reason and to
provide one of several checks of the accuracy of
our numerical results, we not only solve (1}
(4) but also a related system with simplified
transport properties described in the next
paragraph.

Boundary value problems based on what we
shall call “equivalent constant properties”
(E.C.P.)t are constructed as follows: let | = K
where K is a specified constant; let the specific
heats of the components, c,;, be equal and con-
stant and let Sc, Pr, Le; be constants on the
order of one. As mentioned earlier, equations for
fand H are then uncoupled from the W equation
and, because of the boundary conditions (4a)
and (4b), admit similarity solutions. It is natural
to introduce now a new independent variable
# = K~ !5 and new dependent variables f, W
and H, the first being defined by f = K ~#f and
the latter two following from W(¢, 1) = W[ij(n);
&1, H@) = H[n(#)]. Equations corresponding to
(8)H10) are

d¥f 1.4%
a tolar = ”
d’H 1 dH
dﬁ2 + EPrf dfl - 0’ (6)
PW 1. oW df oW
z = ¢ScL 7
aF Y5 =g O
subject to
d . df
— 0 = O =0, llm__= 19 (Sa)
& =70 lim

+ Henceforth, E.C.P. is used consistently. Moreover, V.P.
refers in the grammatically appropriate sense to variable
properties.
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H(0) = H,, = const. lim H{) = 1;  (8b)
W(EO =W =1 for &< ¢,
0 - \
FWE0=TWE0) for &> b;
lim WA =1 (80)

Problems posed by equations (5}{8c) are con-
sidered “equivalent” to equations (1)+(4c), once
a proper choice of K and the Damkohler
number £ is made. The choice of the latter is by
no means trivial. The difficulty is this. In the
V.P. problems, the Damkohler number

Lpep U

(see equation 4c) varies not only as ¢* but also
in a complicated manner because of the factor
(Scyp k), ; clearly, the latter depends on
transport properties. Now, while the formal
relationship between { and { is

(=K%, ©

in any E.C.P. problem the Damkohler number
{ must be property-independent. The question
then is: to what { is a given { to correspond
and vice versa? Herein this correspondence is
arbitrarily established by taking an average of
the factor (Sc,p,, k,)/l,, over the entire é-range
of a given nonsimilar V.P. solution and sub-
stituting this average into (9). This yields
{ = K¥{,,.; the factor K is evaluated according
K = 192 where again we take an average of the
P.wit, product over the £-range. In making these
choices, we hope to minimize the difference
between the heat transfer computed in the two
sets of problems. Final results show that this
indeed happens, at least for the solutions pre-
sented in this report. Furthermore, our
numerical solutions of the E.C.P. diffusion
equation are practically the same as the corres-
ponding analytical (series) solutions of Chung

([31], p. 179).

{
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2. Summary of properties of dissociated air and
method of solution

We represent dissociated air as a binary
mixture of atoms and molecules. The molecular
specie is considered to have twice the weight
of the atoms, the former being assigned an
average weight of 30 and the latter 15. In adopt-
ing this point of view, we adhere to established
procedure exemplified by the works of Fay and
Riddell [ 5] and Scala and Baulknight [32]. The
properties of the individual species are based on
the better data currently available. To conserve
space, we merely list here the pertinent sources
of information on transport properties. The
formulas representing our curve fits to the vari-
ous tabulated data, omitted herein, are given in
[33] and [40].

Temperature—enthalpy relationship. This is
given by a rational function of the form T=
Z(hys)/Z (), is valid over the entire h,,,, T
range, and is based on the analytical properties
of the c,,, relationship of [32].

Frozen specific heat of the mixture, c,. This is
given by the standard formula of [32] in-
corporating the value for ¢, used therein.

Viscosity of the mixture, u. The mixture
formula is based on Wilke [34]; viscosity for
the atomic specie, y,, is based on Yun and Mason
[35] and viscosity for the molecular specie, ,,
is based on the earlier work of Amdur and
Mason [36]; low temperature data conform to
NBS-tables [37].

Conductivity of the mixture, A. Is calculated
as suggested by Mason and Saxena [38] with
Ao~ Wa} Am ~ W, incorporates the Eucken rela-
tion due to Hirschfelder [39].

Binary, atom—molecule diffusion coefficient,
D,_,, = D. This is presented as pD (a function
of temperature) and is based on the data of Yun
and Mason [35]. Graphs of the various proper-
ties are given in [40].

An attempt to integrate equations that have
the structure of equations (1)+3) goes back to
Hartree and Womersley [41]. Their idea is to
replace the ¢-derivatives by finite differences and
then solve the resultant ordinary differential
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equations subject to the split boundary condi-
tions (4a)—(4c) as initial value problems. Specific-
ally, the main steps of our procedure are the
following. The similar flow field which exists
up to & = &, is determined first by integrating
equation (1) and equation (2) with their right-
hand sides set equal to zero. (The solution of
equation (3) is W =1 for all ¢ < &,) This is
tantamount to solving an initial value problem
governed by weakly coupled equations; the
guesses f"(0), H'(0) are systematically improved
as in our earlier work [42] until the conditions at
infinity are satisfied to prescribed accuracy.
Best available property information is used at
each stage of the iterative procedure. The method
is carried over with suitable modifications into
the nonsimilar regime and the same procedure
applies to the simpler boundary value problems,
equations (5}(8c). For details, in particular our
approach to systematic improvements of deriva-
tives at the surface and the so-called interior
matching technique, we refer the reader to [33],
[40] and [43]

3. RESULTS

(1) Heat transfer

We assess the influence of variable transport
properties and the induced nonsimilarity of the
flow field on local heat transfer. To exhibit this
influence clearly, the local convective heat flux,
q., and the diffusive heat flux, g,, are computed
separately. The latter equals the heat released in
the recombination reaction of atoms.

Now, in accord with boundary layer theory,
the total heat transferred to the wall, g,, may be

expressed as the sum
9 = 4. + 44 (10)

where
q == A,‘, ’1 (x 0)
¢ dy ’

and
2

z 0
ds = 2D, 3y w;(x,0) h,,,.
y

i=1

A simple computation shows that in terms
oh, f/ﬁy

_ M [
q. = Prw [ay htf (x’ 0)

- (hafw mf ) W(x 0)] (11)

and

2
d
de = Z waw@Wi(xa 0) hiw

i=1

2
0 0
= Z PwDy ‘a‘; w{x,0) (hifw + k)

i=1

_ B

=3 w(x 0) (b,

- mfw)

Hy
t5e 5 O w(x,0)h:

h? stands for the heat of formation of the ith
specie.

The sum of (11) and (12) gives

Hw | O
4 = Pr [ htf(x 0)

~ (Lew = 1)(hay, = huy) W15 0)]

(12)

+L mxmh9 (13)

 Pr, P L0y
In equation (13), the term with the square
brackets and the remainder still correspond to
q. and g, providing all terms having (h,;, —
h,; ) as a factor are negligible. Now, (h,; — h,,;)
was consistently neglected both in solving the
system (1)+4c) and in calculating the transport
properties. Consistency demands, therefore, that
the same assumption also be introduced into the
various heat transfer formulas.

Consider first the influence of transport
properties on g, as reflected in the ratios
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q.
q:-sim
16,0 P 6 O by, 5 HEEO)
- ., (14
o ey
\/2 w,r w,r tfe w.
q.
qc-sim,E.C.P.
€, 0) Prt (& 0)5—,1 HE,0)
N 0-1 -1 d T ’ (15)
(lw,r) Prw,r (EH(O)
and
q.
qc-sim.V.P.
KE,0) Pr (£,0) a% H(E,0)
= . (16)

I(1,0) Pr=1(1,0) %IH(I’ 0)

(“sim” stands for “similar”). The first of these,
(14), gives a comparison of the nonsimilar,
variable properties, conductive heat transfer
q. with g*,;..—the heat flux at a corresponding
E-location computed according to a modified
Lees formula used in [27]t. The second ratio,

+ The formula applicable to flows past bodies of revolution
as well as two-dimensional flows, is

Glam = 047 Pr,, 33 (o), ' K2UE (B, — h,) Q%)
where

1 peu. U,
2 U
Q) = x\/( ) (Dette)s U

3
Pelte Ue 2. :,
LeTe € p2egy
[0 Pette)s Uo

and the subscripts e, co, and s refer, respectively, to the edge
of the boundary layer, conditions upstream of the bow shock
wave and a reference state. For flow past a flat plate, U, =
U . pelte=(pep), and &=20. Hence A(x)=1/{/(2x);
4% differs from that given by Lees only by the factor /(K)
which is set equal to (!, ,)%'. This procedure apparently
leads to the best agreement with variable property theories,

[26].
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(15), yields the same sort of comparison with
results based on the numerical solution of the
E.C.P. energy equation. In (16), the effect of the
nonsimilarity of the flowfield is isolated in the
sense that g, g, v.p. (Obtained from solutions of
(2) with zero right hand side) rests on the same
property assumptions as g. Both (14) and (15)
require reference states r for the evaluation of
the Prandtl number and I. We choose £, = £, =
1 and the largest &-value of the corresponding
nonsimilar solution, namely ¢, = 4-15. These
choices appear to be most practical because they
tend to bracket the variations induced by
changes in transport properties. We emphasize
that | which appeared formally in (15) was re-
placed with (I, )°2. Consequently, (14) and (15)
are practically the same and yield numerical
results differing by no more than 1 per cent.
(The denominator of equation (14) differs from
its counterpart in (15) only in that the trans-
formed 0h,;/0y is approximated with f"(0)-
Pr,, }) Representative calculations were based
on the following conditions: U, = 8000 ft/sec,
w, = 05, T, = 10,800°R, T,, = 1260°R, p = 0-1
atm. and &, = 1 ft. The effectiveness of the sur-
face as a catalyst was expressed in terms of the
parameter k,£,/U, and examined in the range
3x107% < k,,/U, £3=10"". The para-
meter k,&,/U, ~ {, is more convenient than {,
because it does not depend on transport
properties.

Results presented in Table 1 typify conditions
for efficient catalysts and consequently reflect
the largest variations in transport properties.
Nevertheless, convective heat transfer computed
on the basis of an approximate theory is subject
to relatively mild errors. The last column shows
that the isolated effect of non-similarity, as
defined by equation (16), is to increase g, by not
more than 11 per cent and that this effect is
slightly larger for the larger value of k& /U..
Changes in transport properties alone tend to
have the opposite effect in the sense that
Gesim, vp. < drsim Consequently, the combined
influence is to make g, very close to g*,;,, for all
¢ > 1 irrespective of the choice of the reference



856 A. A. HAYDAY and R. A. McGRAW
Table 1. Effect of variable properties and nonsimilarity of the flow field on convective heat transfer
(kyuéo/U, = 03)
qc 4. q.
4 &, 0 Pr(¢, 0) o/on HE, 0)
( q:sim' ﬁr =1 qc*-sim [ Cr =415 9e-sim, V.P.
1-00 1-7121 06816 01607 0-9286 09084 1-0000
1-05 2-4619 06943 01255 10240 10017 1-1027
1-11 2-4638 06943 0-1249 10196 09974 1-0980
145 2:4654 06943 0-1238 10115 09805 1-0899
2-61 2-4660 06943 0-1228 1-0033 09814 1-0804
415 2-4663 0-6943 01223 09997 09779 10765
k,&o/ U, = 0003
1-00 17121 0-6816 0-1607 09296 09106 1-0000
1-05 2-1547 06914 01374 09849 09657 1-0606
1-11 22270 06923 0-1340 09916 09723 10678
145 2-3245 06934 01293 0-9972 09777 10738
2:61 2-3801 0-6938 01262 09962 09767 1:0727
4-15 2-4025 06940 0-1248 09940 09751 10708
Table 2. Effect of variable properties and nonsimilarity of the flow field on heat flux due to catalysis
kuéo/Ue. = 03
o q q
¢ SdL0) dnWMLO) YHWE0) W,  Wce : e 94/4
qa-E.CP. | &r=1 qugpce. | ér=415
1-00 07618 — — 1-0000 1-0000 — — —
105 04892 04917 1-2618 00047 00114 1-4160 0-8746 69659
1-11 0-4886 03172 08111 00029 00063 1-4232 09791 4-:5209
1-45 0-4883 0-1839 04910 00015 0-0038 13653 0-8433 2:6459
2:61 04881 0-1416 0-3799 00009 00022 13597 0-8398 20548
415 0-4880 0-1296 0-3491 0-0006 00016 13545 0-8367 1-8887
ku&o/U, = 0:003
1-00 07618 — — 1.0000 1-0000 — —_ —
105 05792 0-4057 06225 03319 0-5123 1:7500 11211 4-4154
111 0-5559 02991 05181 02470 04174 1-6697 1-0696 3-4823
1-45 0-5266 0-1854 0-3902 01406 02734 1-5144 09701 2-3652
2:61 0-5110 0-1444 03369 00838 01759 1-4409 09230 19461
415 0-5049 0-1323 03225 0-0616 0-1335 1-4097 09031 1-8253
k, /U, = 0-0003
105 0-7189 01254 01313 08419 08971 1-7273 13591 09981
415 06107 0-1138 01727 0-4463 0-5938 1-6065 1-2640 -
ky&o/U, = 0-00003
105 07569 00154 00161 09819 09874 1-5686 1-5091 0-1122
415 07352 0-0273 00302 09019 09331 1-5667 1-5073 —
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state. While the above comments apply to
specific cases and while a generalization of these
to other flow conditions ought to be based on
further numerical results, it is expected that the
changes in ¢, remain slight in general.

Consider next the influence of transport
properties on the heat flux g, released in the
recombination reaction of atoms. The pertinent
formula is

16.0)Se(6,0)* 2 W(&,0)
a 2
HECE (1, 5w 5 WO

an easy consequence of (12) with (h,,f Pg ) =
0, and our definition of E.C.P. problems. "“The
factor (I, ,)°* appears in (17) for the same
reasons as in (16).

In Table 2, the first two sets of tabulations are
based on the representative flow conditions
used in constructing Table 1. The remaining
subtables contain selected results that typify
conditions for noncatalytic materials. (An
example of a ‘“noncatalyst” is pyrex with
0033 ft/s < k,, < 034 ft/s in the temperature
range 570°R < T,, < 1420°R. In contrast, k,, for
a good silver catalyst is about 1-7. 102 ft/s). The
tabulated ratios gq,/q,pcp. indicate that, un-
like for the case of convective heat transfer,
large errors in g, are possible. Moreover, the
deviations of g; from ¢, g cp depend on the
choice of the reference state. This is also con-
trary to what was found to be the case for con-
vective heat transfer. Evidently, the departures
of the g, values from g, g cp arise partly be-
cause of the significant variations in Sc(é&,0)
and partly because the product (I, ) /05 W
(&, 0) does not agree well with I(&, 0) d/on W(E, 0).
The latter effect must be attributed to the strong
nonsimilarity of the concentration field near the
discontinuity which is not insignificant even for
the extremely low value of k,&,/U, = 000003
with practically constant Sc(¢, 0). The reader
may care to contrast the behaviour of the afore-
mentioned products with their counterparts
appearing in (14) and particularly (15). The
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relative magnitudes of g, and g, are determined
from the ratio

Se= 1 (£,0) 2 W, 0) how,
da _ on
44 _ 3 . (18)
T Pr1(£,0)— H(,0)h,,
on °

The tabulated values are based on’ hl =
2:6509 - 108 ft?/s>—arithmetic average of the
heats of formation for oxygen and nitrogen;
hd = 16656 - 108 ft?/s? and h = 3-6363 - 108 ft?/
s2. In more detailed computations, one ought to
use a properly mass-averaged h that identifies
the actual amounts of dissociation due to oxygen
and nitrogen molecules. In such case, the values
in the g,/q. column need be multiplied by a
constant, not too different from 1. Because g,
tends to change relatively little, the deviations
of the ratio g,/q. follow those of ¢,/q, 5 cp.
The same is true for q,/q. = 1 + q,/q.. The right-
hand limits at ¢ = 1 are not tabulated because
the numerical program does not compute these.
Such limits are otherwise determined.

It is worthwhile to consider briefly what
implications the tabulated results have in con-
nection with catalytic gauges and the associated
diagnostic formulast. Now, one candidate for a
diagnostic formula for w, is implied by (18),
namely

Sel&, 0) =

H(C 0) htf

w, =

P, 0)— W(E, 0) ¢ z

SC(E, 0) H(é 0) by,

(-1 _ 1) (19)
Pre 0)5 w(e, 0) h \ %

1 A catalytic gauge system consists of two heat transfer
gauges; one is a noncatalyst (say glass) and the other is a
catalyst for the recombination of atoms (say silver). Now, in
a frozen hypersonic boundary layer, the first measures
convective heat transfer, but the second measures addition-
ally the heat released in the recombination reaction of atoms.
Having these two measurements, it is then possible to deduce
from the theory the atom concentration at the edge of the
boundary layer. The latter is locally the same as the free-
stream concentration.
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It is at once clear from equation (19) that the
error in w, is proportional to g,/q. or, what
amounts to the same thing, to (g,/g. — 1). The
ratio 0/0n H(¢,0)/0/0n W(&,0) is presumably
correlated and appears finally as a function of
known ambient and wall conditions. We empha-
size that it is not the error in g, or g, but the
error in the ratio g,/q. that matters. Moreover,
we are mainly interested in such errors when &
is slightly larger than 1 (because that is the
location of heat-transfer measurements) and,
a fortiriori, for very low and very high values of
k,&,/U, (because these correspond, respectively,
to an almost perfect noncatalyst and a perfect
catalyst). Now, when k,£,/U, = 0-3—implying
a value of k,, greater than that for silver—q,/q, at
¢ = 105 is more than 40 per cent higher than
qd-E,C.P./qc-E.C.P.lér = 1. This error is slightly
smaller than that reflected in the values of
qa/9a-e.crlé = 1 becauseq. g cp. = g, under-
estimates g, The choice of the reference state
&, = 1 seems logical since the E.C.P. transport
properties correspond more closely to the actual
local conditions. From a practical standpoint
such errors seem hardly tolerable. The situation
remains substantially the same when k,,&,/U, =
0-00003. Of course, the errors here are not too
important because g, is only 11 per cent of q..
The general increase in heat transfer following
the step discontinuity is noreworthy.

2. Flow field

Sample profiles of velocity, total frozen
enthalpy, and atom concentration, showing the
effects of variable transport properties and non-
similarity of the boundary layer, are presented,
respectively, in Figs. 1, 2, and 3; k,&,/U, = 0-3.
The profiles are dimensionless. Evidently, the
aforementioned effects are more or less as
important to the structure of the velocity field
as to the structure of the enthalpy field. Figure 3
shows a partial £-history of the concentration
field W= w/w,. Note that w,, is very close to
zero. Figure 4 presents the &-history of the
derivatives 8%/0n> f(¢&, 0), 8/6n H(E, 0), 8/on W(E,
0) and W(¢, 0) for a less effective catalyst corres-
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ponding to k,.£,/U, = 0-003. The three deriva-
tives are proportional, respectively, to the skin
friction, convective heat transfer, and heat
flux due to catalysis. The very rapid approach
of 8%/on? f(£,0) and d/onH(&,0) to its E-asymp-
totic behavior is noteworthy. These two curves
show explicitly the induced non-similarity
effect on the two derivatives just mentioned.
Fortunately, the variations of the transport
properties tend to smooth the induced non-
similarity of &/0n H((,0) and result in the
relatively small errors in g,. Figure 5 presents the
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FiG. 5. &-history of the convective heat transfer parameter
d/on H(&, 0)/e/on H(1, 0).

normalized convective heat-transfer parameter -
d/on H(&0)/0/on H(1,0) in a wide range of
catalytic efficiencies. The dashed curves depict
the results for flat plates and wedges that are
catalytic for all £ Analogous results for the
surface concentration ratio W(¢, 0) are shown in
Fig. 6. We note the significant deviation of a
typical E.C.P. curve from its exact counterpart.
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Figure 7 tests and verifies the appropriateness
of the E.C.P. definition. The dots are taken from
Chung ([31], p. 179, Fig. 12). The solid curve
is based on our E.C.P. definition of a corres-
ponding flat plate of uniform catalyticity.
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4. CONCLUSIONS

The paper shows that variable transport
properties and nonsimilarity of the flow field
have a significant influence on the surface heat
flux released in the recombination reaction of
atoms. The same effect on convective heat
transfer is considerably smaller. The results
suggest that diagnostic formulas based on the
simpler (E.C.P.) theories may be in serious
error. The main reason is that while the step
discontinuity in surface catalyticity causes a
large (and from the standpoint of diagnostics
often beneficial) increase in total heat transfer it
apparently also increases the errors of the E.C.P.
analyses. The numerical method of solution is
reliable and general. Chemical reactions in the
gas phase and other effects may be included with
relative ease.
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Résumé—Cette étude se rapporte aux effets de catalyse de surface et des propriétés de transport variables
sur la structure de couches limites d’air dissocié figé chimiquement entourant des plaques planes et des
diédres élancés. Notre principal intérét est I'écoulement hypersonique sans similitude le long de segments
catalytiques placés a I’aval des bords d’attaque ou des points d’arrét revétus de matériaux noncatalytiques.
Les problémes sont résolus numériquement ; on montre que la méthode de résolution est fiable et appliqu-
able en général a la solution des équations de la couche limite sans similitude. Le transport de chaleur
local par convection et le dégagement de chaleur dii  la catalyse des atomes sont calculés séparément.
Ces résultats montrent que les proprétés de transport variables et la non-similitude du champ d’écoulement
ont une influence sensible sur le flux de chaleur dii 4 la catalyse et suggérent la possibilité d’erreurs sérieuses
dans les formules disponibles de diagnostic pour les jauges catalytiques.

Zusammenfassung—Die Arbeit befasst sich mit den Auswirkungen von Oberflichen-Katalyse und
variablen Transporteigenschaften auf die Struktur der Grenzschicht an ebenen Platten und flichen
Keilen in chemisch eingefrorener, dissoziierter Luft. Das Hauptinteresse gilt dabei nichtihnlichen hyper-
sonischen Strémungen iiber Katalysatorsegmenten, die hinter den Anstrdmkanten oder den Staupunkten
angebracht und mit nichtkatalytischen Materialien abgedeckt sind. Die Probleme wurden numerisch
geldst, es wird gezeigt, dass die Losungsmethode zuverldssig ist und allgemein zur Losung von nicht-
dhnlichen Grenzschicht-Gleichungen verwendet werden kann. Der lokale konvektive Warmetransport
und die lokale Warmeausbeute aufgrund der Katalyse wurden einzeln berechnet. Die Ergebnisse zeigen,
dass die variablen Transporteigenschaften und die Nicht-Ahnlichkeit des Stromungsfeldes einen erheb-
lichen Einfluss auf den Warmestrom aufgrund der Katalyse haben. Die Ergebnisse weisen auf mégliche
Fehler bei den verfiigbaren Rechenformeln fiir katalytische Abschétzungen hin.

Annoranma—B gannol pafore paccMaTPUBaeTCA BIMAHNE KATAIN32A HOBEPXHOCTH U IEPEMEH-
HHIX CBOMCTB MEPEHOCA HA CTPYKTYPY XHMUYECKH 3aMOPO:KEHHHX AUCCOLMHPOBAHHEIX
NOrPAHNYHEIX CJIOEB BO3AYXA, OOTEKAOINX IUIOCKHE ILTACTHHBL M TOHKUE KJIUHbA. B
OCHOBHOM HAC WHTePeCyIOT HeaRTOMOJeJbHHE THNEeP3BYKOBHIE IOTOKU, O00TeRAaWILNMe KaTa-
JNUTHYECKHe YYACTKM HA NepPefHUX KPOMKAX WIM B KPUTHYECKHX TOYKAX, NOKPHTHE HEKATA-
TMTHYECKMMM MaTepualaMi. 3afauyl pemaloTcA YUCIEHHO ; NOKA3AHO, YTO METOR PeleHMA
HajlexeH i, B 00lleM, MPUMEHUM K DelileHUI0 HeaBTOMONENbHHIX ypaBHeHMIt HOTDAHMYHOIO
ciod. PaccuuTaHH JIOKAJIBHBINM KOHBEKTUBHHII TenaooOMeH M BHIEIIEHME Temia 3a CYeT
KaTaJgu3a aTOMOB. OTH DPeayJbTaTH TNOKA3HBAWT, YTO IepeMeHHHE CBOMCTBA IEpeHoca M
HeaBTOMOJEIbHOCTD IT0JIA TIOTOKA 3HAYMTEIBHO BIMAIOT HA TEINIOBOM NOTOK 3a CYeT Karaamsa
M YKa3elBAIOT HA BOBMOMHEE CePh3HBE IOTPELIHOCTH B MMEIIIMXCA PacueTHHX QopMyIax
IS KaTaJUTHUeCKUX 1puGOpoB.



